The business case for Global Visioning Systems The FleetSAR Constellation National Space Conference 2023 ## GLOBAL VISIONING SYSTEMS FleetSAR is a Synthetic Aperture Radar Satellite Constellation digital infrastructure project to develop next generation space systems. #### EARTH OBSERVATION REDEFINED AS # GLOBAL VISIONING #### Public Private Partnership for project development Currently South Africa is reliant on international satellites for data about its 1.2-million km² territory, excluding its oceans. Reliance on foreign satellites also means that South African satellite-data users have no control over what images they are sent, what the images focus on and when they will get them. The FleetSAR Project is focused on a Greenfields project that intends to design, manufacture, launch and operate a fleet of 12 small satellites in low earth orbit around the earth. Fleetsar will add not only to the country's ability to monitor its oceans, agriculture, industry and human settlements, but also many other African countries across the continent, enabling South Africa to participate in the lucrative commercial satellite economy. This project will be a wholly owned South African project that will service local, regional and international customers. #### FleetSAR Economic Highlights Project value USD 840 000 000 Capex USD 345 000 000 NPV USD 210 000 000 IRR 15.93 Initial direct jobs created 50 Potential indirect jobs 200 High socio-economic impact ## Institutional arrangement The Project is in development phase. The co-development parties are - MPSA Space Infrastructure - Space Commercial Services Holdings - Industrial Development Corporation of South Africa Parties are invited to join as co-developers and/or funding partners who participate in the revenue opportunity. The model also ensures sustainability in ensuring that the high level skills and expertise are retained within the project. A focus of the project is to transfer and develop skills within this niche sector. ## **Market Analysis** | Manufacturing p.a | USD 14.1 BN | |---------------------------------|-------------| | Defense | USD 4.7 BN | | Communications | USD 7.5 BN | | Navigation | USD 0.6 BN | | Scientific | USD 1.3 BN | | Commercial | Undefined | | Potential market growth in 2021 | USD 3.0 BN | | Manufacturing | 15% | | Additional services | 75% | | Additional services | | | Non recurring development | 5% | | Constellation Management | 20% | | Launch advisory | 30% | | Data management | 15% | | Other - commercial | Undefined | #### **MARKET *USD 200 BN** ^{*}Satellite Industry association, State of the satellite industry report 2016 http://www.sia.org/wp-content/uploads/2016/06/SSIR16-Pdf-Copy-for-Website-Compressed.pdf ### **Ecosystemic models** ## **System Infrustucture** # DATA REQUIREMENTS BY SECTOR #### RELATIVE DATA USE BY SECTOR | High Use Moderate Use Low/No Use | SCIENTIFIC
FOCUS DATA | HIGH-MOD. RES.
OPTICAL | VHR OPTICAL | SAR | HYPERSPECTRAL
(POTENTIAL) | |------------------------------------|--------------------------|---------------------------|-------------|-----|------------------------------| | DEFENSE | | | | | | | NATURAL RESOURCE MON. | | | | | | | ENERGY | | | | | | | ENGINEERING/INFRASTRUCTURE | | | | | 4 | | LBS (POTENTIAL) | | | | | | | FINANCE (POTENTIAL) | | | | | | | MARITIME | | | | | | | DISASTER MANAGEMENT | | | | | | | ENVIRONMENT MONITORING | | | | | | # SUSTAINABLE GEALS #### **Sustainable Development** #### SUSTAINABLE GOALS 10 REDUCED INEQUALITIES 13 CLIMATE ACTION Promote sustained, inclusive and sustainable economic growth, full and productive employment and decent work for all **ASPIRATION 6:** An Africa whose development is people-driven, relying on the potential of African people, especially its women and youth, and caring for children **ASPIRATION 7:** Africa as a strong, united and influential global player and partner | REQUIREMENTS | | | | | | | | | |--------------------------|---------|-------|------------|-------------|------------|---------|----------------------------|----| | Sub-Segments | Optical | Radar | GSD
<1m | GSD
1-5m | GSD
>5m | Archive | Revisit/
Low
Latency | 3D | | Precision
Agriculture | | | | | | | | | | Agricultural
Policies | | | | | | | | | | Food Security | | | | | | | | | | Forestry | | | | | | | | | | Water Mgmt. | | | | | | | | | | | | Hig | ıh 📗 | Med | L | ow | | 1 | | | REQUIREMENTS | | | | | | | | | |--------------------------|--------------|-------|------------|-------------|------------|-----------------|---------|----------------|----| | Sub-
Segments | Optical | Radar | GSD
<1m | GSD
1-5m | GSD
>5m | High
Revisit | Archive | Low
Latency | 3D | | Monitoring
Activities | | | | | | | | | | | Mission
Planning | | | | | | | | | | | Border
Monitoring | | | | | | | | | | Med Low High | REQUIREMENTS | | | | | | | | | |--|---------|-------|------------|-------------|------------|---------|----------------------------|----| | Sub-Segments | Optical | Radar | GSD
<1m | GSD
1-5m | GSD
>5m | Archive | Revisit/
Low
Latency | 3D | | Sea state/ sea ice monitoring | | | | | | | | | | Integrated
Coastal Zone
Monitoring | | | | | | | | | | Pollution | | | | | | | | | | Ship Detection and Tracking | | | | | | | | | | | | Hi | gh | Med | L | ow | | 17 | 17 #### **DEMAND FOR EARTH OBSERVATION SOLUTIONS** #### **DATA REQUIREMENTS BY KEY APPLICATIONS** | APPLICATION
DOMAIN | | TYPES OF DATA | | | | |--------------------------------------|--|--|---|---|---| | | RADAR | OPTICAL | POTENTIAL
HYPERSPECTRAL | REVISIT | SOURCES | | DEFENSE | High-resolution data, with the
benefit of all-weather day/night
imaging plus high-accuracy DTM
(DTED2 and DTED3 levels coming
soon) | Requires very high-resolution data
(<1 m), high-accuracy and
pan/multispectral data for IMINT,
plus high-accuracy DTM (DTED2 on
a large scale and DTED3 in strategic
fields) | Combined with higher-
resolution (<10 m) data,
hyperspectral can develop
solutions to improve land
classifications. Band range in the
SWIR to detect camouflaged
objects. | Very frequent revisits
required for numerous
situation-monitoring
applications | High- and very high-
resolution commercial data
or data collected by
proprietary systems | | NATURAL
RESOURCES
MANAGEMENT | Radar imaging for surface
texture/water content used in land
applications, including geology
and agriculture; high-resolution
radar complements optical data;
creation of topographic maps
using InSAR and 3D modeling | Mid-resolution (20-30 m) data will
suffice for infrared bands in a range
of applications, such as wide-area
agriculture; high-resolution data
used in precision agriculture and
forest mapping; DEM/DTM used to
estimate biomass | Data in red-edge, SWIR for
monitoring chemical/biophysical
properties. Use in
forestry/agriculture for invasive
species detection/monitoring | Lower revisit times required for monitoring applications, being able to monitor in specific windows, such as planting season to harvest | Mostly low-cost moderate-
and high-resolution data; in
some cases, high-resolution
commercial data are used
for precise mapping | | ENERGY,
UTILITIES AND
MINING | Medium- to high-resolution radar
data utilized in offshore seep
monitoring, in combination with
optical data for geological
mapping; InSAR used to measure
subsidence | Very high-resolution data for
infrastructure monitoring and
logistics; low-cost, moderate
resolutions solutions for wide-area
geological mapping; DEMs for
geology and infrastructure | Data along the visible, NIR and
SWIR wavelengths to capture
details (surface topography, rare
minerals) | Ranging from
recent/near real time for
monitoring; archive data
will suffice for geological
mapping | Very high-resolution
commercial data; low-cost
moderate- or high-
resolution data | | INFRASTRUCTURE
AND
ENGINEERING | Used for DEMs and assessing
subsidence using InSAR, which
could impact the stability of
infrastructure | Very high-resolution data enhances
details, particularly in urban areas;
wider-scale projects can make do
with lower resolution and increased
swaths | Detect pipeline leakages
through alteration minerals,
improved land cover
classifications | Medium (2 weeks-
monthly) revisits
required for regular
monitoring; time series
from archives for land
change | High-resolution data for
detailed projects; lower-
cost/resolution for wider-
area projects | #### DATA REQUIREMENTS BY KEY APPLICATIONS | APPLICATION | | TYPES OF DATA | | | | |----------------------------|---|--|---|---|---| | DOMAIN | RADAR | OPTICAL | POTENTIAL
HYPERSPECTRAL | REVISIT | SOURCES | | LOCATION-BASED
SERVICES | Limited opportunities at this
stage; applications require a
more "visual" element,
provided by optical data | Very high-resolution optics; bands in at least the visible range. | Limited applications due to a
focus on VHR datasets.
Crossover into precision
agriculture applications. | Refresh rate is the key to
defining change detection at
high frequencies; key market
for new constellation solutions | VHR data; high location
accuracy (native or
processed) is needed for
more precision applications | | FINANCE | Focus is more on optical;
however, certain applications
such as elevation changes in
oil storage will use SAR.
Companies like Ursa
specifically focus in this area | Very high-resolution optics; bands in at least the visible range. | Expected to be limited at this stage. Most applications do not call for greater spectral ranges. | Refresh rate is key to defining
change detection at high
frequencies; key market for
new constellation solutions | VHR data; receiving
information as soon as
possible requires low
latency and high revisit | | MARITIME
OPERATIONS | Medium- to high-resolution
data used in sea ice detection;
higher resolutions used for
ship tracking and marine
transport | Algal bloom monitoring using low-
to medium-resolution data; data
used in fishing industry and coastal
zones for environmental purposes | Data requirements for greater
delineation along the red edge
(detailing ocean color and
algal blooms), high-resolution
data for maritime monitoring | High revisit times required for
ship tracking; less of an issue
for algal bloom monitoring | Low-cost, moderate-
resolution data; high-cost
commercial data at higher
resolution | | DISASTER
MANAGEMENT | Higher resolution preferred,
which is a key element in flood
monitoring/mapping given the
likely cloud cover and ability
to measure the extent of good
water | Higher resolutions preferred in areas such as logistical support and crisis mapping | Data in VNIR, SWIR with high
spectral/spatial resolution and
high dynamic range for
emergency response and fire
risk assessment; potential
usage in monitoring invasive
species | Higher revisit times are better;
responsiveness is a key issue; a
number of applications require
regular mapping | High-resolution commercial
data and data acquired
through the International
Charter | | ENVIRONMENT
MONITORING | Ocean current modeling and tidal information, ocean forecasts with radar altimetry and surface feature discrimination for land-use applications | Range of instruments for
atmospheric analysis; the specific
instruments depend on the
application area, e.g., global
land/ocean monitoring | Greater spectral resolution
required, in particular to
support vegetation monitoring
(global forestry monitoring,
food security) | Daily revisits for operational
services (such as meteorology,
air quality); otherwise, time is
less of a constraint | Specific science-oriented
civil government systems;
low-cost commercial and
government data | #### SCS SPACE FOCUS AREAS ### CONSTELLATIONS AND MISSIONS PARTNER #### **ENGINEERING SERVICES** Procurement Management (Level 5 to Level 8) **Program Management** Space System Engineering **Product Assurance** **Technology Management** #### NANO SATELLITES ## HANDS ON TRAINING Mission Analysis and Design Space System Engineering Theory and Practice designing and building 2U, 3U and 6U satellites Establish own space engineering laboratory #### **nSight-1 to -3 Project Partners** for tomorrow # Thank You SCS Aerospace Group, Space Commercial Services Thongwane NAMANE Thongwane@scs-space.com