National Space Conference 31 August 2023

Mapping the presence of woody invasive alien plants in the Luvuvhu Catchment of South Africa using multispectral Sentinel-2 satellite imagery

Liam Sean Cogill

PhD Student – Natural Resources & Engineering - Water Science Division, Agricultural Research Council and Dept of Conservation Ecology and Entomology, Stellenbosch University

Supervisor: Dr Alanna Rebelo Water Science Division – ARC

Co-supervisor: Prof Karen Esler
Dept of Conservation Ecology and
Entomology - SU

WRC Project: 2022/2023-00901

Mapping woody invasive alien plant species and their impacts in strategic water source areas

Aims – Use freely available satellite imagery to:

- 1. Map woody invasive alien plants in key SWSA's
- 2. Estimate the water use of woody invasive alien plants

Methods

- Hold stakeholder workshops to determine scope
- Collect geotagged photos of LULC as training data using Cybertracker
- Process training data on ArcGIS Pro
- Perform classification using Google Earth Engine
- Make all training data available on iNaturalist.org

Team

Dr. Alanna Rebelo, Prof. Karen Esler, Mr. Liam Cogill, Ms. Thandeka Skosana

Introduction

Woody invasive alien plants (IAPs) pose significant threats to South Africa

Ecosystems

(Latimer et al., 2004, Pyšek et al., 2020)

Economy

(Münch et al., 2019; Ndhlovu et al., 2011; Venter et al., 2020)

Many more..

(Ehrenfeld, 2003; Jacobs et al., 2020; Naudé, 2012; Raizada et al., 2008; Tererai et al., 2013)

Water

(Le Maitre et al., 2000, 2015, 2016; Moncrieff et al., 2021)

- SWSAs NB and take up 10% of SA land area and produce 50% of SA freshwater (Le Maitre et al., 2018; Lötter & Le Maitre, 2021; Nel et al., 2017)
- IAPs therefore especially problematic in water scarce country
- To effectively manage these IAPs, accurate updatable maps are required

Methods

Virtual stakeholder workshop

- Key woody invasive alien plant taxa of concern
- Practical considerations
- Gain perspective of the key invasive alien plant issues in the landscape

Fieldwork campaign

- Collect geotagged photographs of LULC via road network
- Captured on the CyberTracker App

Methods

Fieldwork campaign

Sentinel-2 Classification

Data uploads

Naturalist

- Training data processed in ArcGIS Pro
- Sentinel-2 multispectral classification with Support Vector Machine in open source Google Earth Engine
- Series of classifications including strategic bands and indices
- Total overall accuracy assessment via Confusion Matrix

Virtual stakeholder workshop

LULC Classes:

Colour	_LULC Class
	Irrigated Agriculture
	Dryland Agriculture
	Orchards
	Grassland
	Indigenous Bush
	Water
	Wetland
	Bare Ground
	Urban
	Indigenous Forest
	Gum
	Pine
	Other Invasive Alien Trees
	Mauritius Thorn
	Lantana
	Triffid Weed
	Bugweed

Fieldwork observations: Ecological Expertise - The Landscape

Many community crop fields and gardens irrigated from rivers and dams

Fieldwork observations: Ecological Expertise - The Landscape

- Various distinct agricultural activities: such as tea and maize
- Different orchard types: Banana, Macadamia and Pecan, as well as Guava, Avocado, Mangoes

Fieldwork observations: Ecological Expertise - The Landscape

Central - Southern regions: *Vachellia, Senegalia, Dichrostachys, Euphorbia, Terminalia, Aloe, Dovyalis,* etc. **Northern**: *Colophospermum mopane* and *Combretum* dominant, with lower densities of *Senegalia, Vachellia*, and *Dichrostachys*

<u>Fieldwork observations</u>: Ecological expertise - Invasive Alien Plants

Gum and Pine plantations

<u>Fieldwork observations</u>: Ecological Expertise - Invasive Alien Plants

Research Question

What level of detail is required to get the best mapping results and accurately separate LULC's?

Sentinel-2 – Support Vector Machine Classification

All bands and indices from Sentinel-2 + ALOS landforms and ALOS elevation

Bands: B2, B3, B4, B5, B6, B7, B8, B8A, B11, B12, NDVI, Chlogreen, LAnthoC, LCaroC, LChloC, BAI, GI, gNDVI, MSI, NDrededgeSWIR, NDTI, NDVIre, NDVI1, NDVI2, NHI, EVI, EVI2, EVI2_2, MSAVI, NormG, NormNIR, NormR, RededgePeakArea, RedSWIR1, RTVIcore, SAVI, SRBlueRededge1, SRBlueRededge2, SRBlueRededge3, SRNIRnarrowBlue, SRNIRnarrowGreen, SRNIRnarrowRededge1, SRNIRnarrowRededge2, SRNIRnarrowRededge3, STI, WBI, NDMI, NDBR, ALOS landforms, ALOS elevation

Classif ication	Description	Invasive Alien Plant Classes	Accuracy
1	All LULC's including separate invasive alien plant classes	Gum, Pine, Mauritius Thorn, Bugweed, Lantana, Chromolaena, Other Invasive Alien Plants (Bamboo, Wattle, etc.)	0.75
2	Same as 1, but exclude 'Other Invasive Alien Plants' and merge Lantana, Chromolaena, Mauritius Thorn, Bugweed into an 'Invasive Merge' class	Gum, Pine, Invasive Merge (Chromolaena, Lantana, Bugweed, Mauritius Thorn)	0.85
3	Same as 1, but merge all invasive alien plant classes into one big 'Invasive Merge' class	Invasive Merge (Pine, Gum, Chromolaena, Lantana, Bugweed, Mauritius Thorn)	0.83

Sentinel-2 Classification

Sentinel-2 Classification

Closing Remarks

- Map can be used by managers and citizens to improve regional strategies for woody invasive alien plant control
- Can estimate the extent of invasive alien plants across the landscape at a catchment scale
- Planning and prioritising IAP clearing operations
- Detecting new infestations in areas that were previously not on our radar
- Can be replicated in other strategic water source areas

Closing Remarks

These maps can further serve as a foundation for additional invasive alien plant studies

Integration of remote sensing and machine learning:

- Invasive Alien Plant water use estimations
- Invasive Alien Plant density
- Cost Benefit Analyses

References

- Ehrenfeld, J. G. (2003). Effects of Exotic Plant Invasions on Soil Nutrient Cycling Processes. Ecosystems, 6(6), 503-523. https://doi.org/10.1007/s10021-002-0151-3
- Jacobs, K., Conradie, T., Jacobs, S. (2020). Microbial Communities in the Fynbos Region of South Africa: What happens during Woody Alien Plant Invasions. Diversity 2020, 12, 254. https://doi.org/10.3390/d12060254
- Latimer, A. M., Silander, J. A., Gelfand, A. E., Rebelo, A. G., & Richardson, D. M. (2004). Quantifying threats to biodiversity from invasive alien plants and other factors: a case study from the Cape Floristic Region.
- Le Maitre, D. C., Forsyth, G. G., Dzikiti, S., & Gush, M. B. (2016). Estimates of the impacts of invasive alien plants on water flows in South Africa. Water SA, 42(4), 659–672. https://doi.org/10.4314/wsa.v42i4.17
- Le Maitre, D. C., Gush, M. B., & Dzikiti, S. (2015). Impacts of invading alien plant species on water flows at stand and catchment scales. In AoB PLANTS (Vol. 7, Issue 1). Oxford University Press. https://doi.org/10.1093/aobpla/pl/043
- Le Maitre, D. C., Versfeld, D. B., & Chapman, R. A. (2000). The impact of invading alien plants on surface water resources in South Africa: A preliminary assessment (Vol. 26, Issue 3).
- Le Maitre, D. C., Walsdorff, A., Cape, L., Seyler, H., Audouin, M., Smith-Adao, L., Nel, J. A., Holland, M., & K., W. (2018). Strategic Water Source Areas: Management Framework and Implementation Guidelines for Planners and Managers.
- Lötter, M., & Le Maitre, D. (2021). Fine-scale delineation of Strategic Water Source Areas for surface water in South Africa using Empirical Bayesian Kriging Regression Prediction: Technical report. March, 1–34.
- Münch, Z., Gibson, L., & Palmer, A. (2019). Monitoring effects of land cover change on biophysical drivers in rangelands using albedo. Land, 8(2). https://doi.org/10.3390/land8020033
- Naudé, M. (2012). Fynbos Riparian Biogeochemistry and Invasive Australian Acacias. MSc Thesis. University of Stellenbosch.
- Ndhlovu, T., Milton-Dean, S. J., & Esler, K. J. (2011). Impact of Prosopis (mesquite) invasion and clearing on the grazing capacity of semiarid Nama Karoo rangeland, South Africa. *African Journal of Range and Forage Science*, 28(3), 129–137. https://doi.org/10.2989/10220119.2011.642095
- Nel, J. L., Le Maitre, D. C., Roux, D. J., Colvin, C., Smith, J. S., Smith-Adao, L. B., Maherry, A., & Sitas, N. (2017). Strategic water source areas for urban water security: Making the connection between protecting ecosystems and benefiting from their services. Ecosystem Services, 28, 251–259. https://doi.org/10.1016/j.ecoser.2017.07.013
- Pyšek, P., Hulme, P. E., Simberloff, D., Bacher, S., Blackburn, T. M., Carlton, J. T., Dawson, W., Essl, F., Foxcroft, L. C., Genovesi, P., Jeschke, J. M., Kühn, I., Liebhold, A. M., Mandrak, N. E., Meyerson, L. A., Pauchard, A., Pergl, J., Roy, H. E., Seebens, H., ... Richardson, D. M. (2020). Scientists' warning on invasive alien species. *Biological Reviews*, 95(6), 1511–1534. https://doi.org/10.1111/brv.12627
- Raizada, P., Raghubanshi, A.S., Singh, J.S. (2008). Impacts of invasive alien plant species on soil processes: A review. Proc. Nat. Acad. Sci. India, Sect. B, Vol. 78 Pt. IV, 2008.
- Rebelo, A. J., Gokool, S., Holden, P. B., & New, M. G. (2021). Can Sentinel-2 be used to detect invasive alien trees and shrubs in Savanna and Grassland Biomes? Remote Sensing Applications: Society and Environment, 23(May), 100600. https://doi.org/10.1016/j.rsase.2021.100600
- Tererai, F., Gaertner, M., Jacobs, S. M., & Richardson, D. M. (2013). Eucalyptus invasions in riparian forests: Effects on native vegetation community diversity, stand structure and composition. Forest Ecology and Management, 297, 84–93. https://doi.org/10.1016/j.foreco.2013.02.016
- Venter, Z. S., Scott, S. L., Desmet, P. G., & Hoffman, M. T. (2020). Application of Landsat-derived vegetation trends over South Africa: Potential for monitoring land degradation and restoration. *Ecological Indicators*, 113. https://doi.org/10.1016/j.ecolind.2020.106206

Thank you for listening!

ACKNOWLEDGEMENTS:

Dr. Alanna Rebelo
Prof. Karen Esler
Ms. Thandeka Skosana
Mr. Nick Coertze
ARC – Water Science Division
Water Research Commission
Asset Research
Luvuvhu stakeholders

Find out more: RebeloA@arc.agric.za

